

Low Cost Configuration of SRAM Based ALTERA devices

Author: Guillermo Jaquenod, <guillermoj@elkonet.com>
ELKO Componentes Electrónicos S.A.

Constitución 3040 – Ciudad Autónoma de Buenos Aires
C1254AAZ

ARGENTINA

Abstract: During device operation, SRAM based ALTERA devices store configuration data in
volatile SRAM cells, therefore that information must be reloaded each time the device powers
up. The configuration data to be loaded must be retrieved from some non-volatile source such
as special configuration memories or external sources, using different configuration schemes.
The use of Configuration devices is very direct and simple, but these benefits are sometimes
obscured by its cost, that can get over the cost of the device to be configured. The other
configuration methods are a bit more complex and require the use of some I/O pins of an
external microprocessor, but they can be useful to attain simple and cheap configuration
methods.
This paper describes the use of standard, very low cost serial EEPROM memories for
configuration, using minimum microprocessor resources, in Passive Serial Configuration
mode; in this case, the EEPROM memory can be used not only to store configuration data but
also some other non-volatile information required by the microprocessor.

1. Introduction

During device operation, SRAM based ALTERA devices store configuration data in volatile
SRAM cells, therefore that information must be reloaded each time the device powers up. That
configuration data must be retrieved from some non-volatile source such as special
Configuration Devices or through an external microprocessor, using different configuration
schemes (Table 1):

Table 1: Configuration Modes

Configuration scheme Device Family Typical use

Configuration device (CD) APEX20K, FLEX10K

ACEX1K, FLEX6000

Configuration with the EP16, EP8, EPC2, EPC1 or EPC1441
configuration devices

Passive Serial (PS) APEX20K, FLEX10K

ACEX1K, FLEX6000

Configuration with a serial synchronous microprocessor interface
and the MasterBlaster, ByteBlasterMV or BitBlaster

Passive Parallel Synchronous
(PPS)

APEX20K

ACEX1K, FLEX10K

Configuration with a parallel synchronous microprocessor
interface

Passive Parallel
Asynchronous (PPA)

APEX20K

ACEX1K, FLEX10K

Configuration with a parallel asynchronous microprocessor
interface, that treats the target device as memory

Passive Serial Asynchronous
(PSA)

FLEX6000 Configuration with a serial asynchronous microprocessor interface

Joint Test Action Group
(JTAG)

APEX20K

ACEX1K, FLEX10K

Configuration through the IEEE 1149.1 pins

The use of configuration memories (CD method) such as the EP1441, EPC1, EPC2, EPC8 or
EPC16 is very straightforward, but their benefits may be obscured by it cost, which in the case
of ACEX1K devices can get over the cost of the device to be configured. As an additional
drawback, configuration memories can be only used to store configuration data, and nothing
more.

The other configuration methods are a bit more complex and may require the use of a few I/O
pins of an external processor, but they can still be useful to attain simple and cheap
configuration methods. Specifically, the availability of standard, very low cost EEPROM
memories with serial interfaces can offer new alternatives to the configuration problem; this
solution requires minimum microprocessor resources, allowing the processor to use the
EEPROM memory to store not only configuration data but also some other non-volatile
information required by the application.

2. Configuration File Sizes

Each different device requires configuration files of different size, as described in Table 2:

Table 2: Configuration File Sizes

Device Data Size
(Bits)

Data Size
(Kbytes)

EP20K400 3,878,000 474

EP20K200 1,950,000 238

EP20K100 985,000 121

EPF10K250A 3,300,000 403

EPF10K200E 2,757,000 337

EPF10K130E 1,840,000 225

EPF10K130V 1,600,000 194

EPF10K100E 1,336,000 164

EPF10K100, EPF10K100A, EPF10K100B 1,200,000 146

EPF10K70 892,000 109

EPF10K50E, EP1K50 785,000 96

EPF10K50, EPF10K50V 621,000 76

EPF10K40 498,000 61

EPF10K30E, EP1K30 470,000 58

EPF10K30A 406,000 50

EPF10K30 376,000 46

EPF10K20 231,000 29

EPF10K10A, EP1K10 120,000 15

EPF10K10 118,000 15

EPF6024A 398,000 49

EPF6016, EPF6016A 260,000 32

EPF6010A 260,000 32

These numbers can be used only as an estimate because different MAX+plus II or Quartus II
software versions may add a slightly different number of padding bits during programming.
However, it must be noted that most of the cost-sensitive devices (typed in italics) have
configuration file sizes under one Mbit.

3. The PASSIVE SERIAL configuration mode

In PASSIVE SERIAL (PS) configuration mode, an external controller passes configuration data
to one or more devices via a serial data stream. The hardware resources required by the

controller to configure such devices are very reduced, as shown in Figure 1, involving only the
use of five lines: two bi-directional lines (CONF_DONE and nSTATUS), and three device input
lines (DATA, nCONFIG and DCLK).
PS configuration mode can
be used to configure merely
one device, or a chain of
devices; in the last case, the
nCEO output pin form the
first device is cascaded into
the nCE input pin of the
second device, and so on. It
is a three steps process:

• Start: the controller

checks that nSTATUS is
high, puts a zero on
nCONFIG, waits until
CONF_DONE and
nSTATUS go to zero,
then writes a one on
nCONFIG and waits until
the target device releases nSTATUS.

• Data transfer: after the configuration process has started, the microprocessor places the

configuration data one bit at a time, generating DCLK positive edges to input this data in the
target devices, with a clock frequency up to 16MHz. Following the falling edge of DCLK
after all it configuration bits are received, the device just configured releases CONF_DONE
and pulls down it nCEO output. While loading data, the controller must check the nSTATUS
line, which is pulled down by the device under configuration if it detects some error. This
error detection capability is obtained through checksum information embedded with the
configuration data.

• Initialization: after CONF_DONE goes high, DCLK must be clocked 40 additional times for

APEX devices and 10 times for FLEX devices to initialize the device, going into user mode.
When multiple devices are configured, the wired-AND CONF_DONE line remains low until
the last device is configured, therefore all devices go to Initialization mode at the same time.

A timing diagram of the
configuration process is
shown in Figure 2,
highlighting the different
steps. From a micro controller
point of view (where time
units are usually measured in
microseconds) the time
constraints to be satisfied are:

tCFG: nCONFIG low pulse width must be greater than 8 microseconds
tSTATUS: the device can take up to 40 microseconds to release nSTATUS
tCF2CK: the delay from nCONFIG high until the first rising edge on DCLK must be greater

than 40 microseconds

CONF_DONE

nSTATUS

DATA

nCONFIG

DCLK

CONF_DONE

nSTATUS

nCE nCEO

DATA

nCONFIG

DCLK

CONF_DONE

nSTATUS

nCE nCEO

DATA

nCONFIG

DCLK

VCC

FIGURE 1

CONF_DONE

nSTATUS

DATA

nCONFIG

DCLK

CONF_DONE

nSTATUS

nCE nCEO

DATA

nCONFIG

DCLK

CONF_DONE

nSTATUS

nCE nCEO

DATA

nCONFIG

DCLK

VCC

FIGURE 1

nCONFIG

nSTATUS

CONF_DONE

DCLK

DATA

START DATA TRANSFER INIT. USER

FIGURE 2

nCONFIG

nSTATUS

CONF_DONE

DCLK

DATA

START DATA TRANSFER INIT. USER

FIGURE 2

There is a point to be noted about the PS mode: after configuration has ended, any change in the
DCLK or DATA lines is ignored by the target devices. This point can be used to share these
microprocessor lines with other applications.

4. About .HEX, .TTF and .RBF files

After project compilation, the MAX+PLUS II Compiler automatically generates SRAM Object
Files (.SOF), Tabular Text Files (ASCII file with extension .TTF), and Hexadecimal Files
(ASCII file with extension .HEX), that contain the data for device configuration in a PS
configuration scheme. By using the Convert SRAM Object Files command (File menu), the
designer can also create a “raw binary file” (with extension .RBF), that stores the configuration
data in binary format.

In all cases, the configuration data is represented as bytes that must be sent to the configured
device with the LSB first.

HEX: it is an ASCII text file (with the extension .hex) in the Intel Hex format,
automatically generated by the Assembler when an SRAM device is assigned as the target
device. Many SRAM Object Files (.SOF) generated during compilation may be combined
in only one HEX file with the Convert SRAM Object Files command.
An extract of a sample HEX file is shown:

:020000040000FA
:2B000000FFFF62FF2500FFFFFFFFFFFFFFFFFFFFFFF...FF76
:2B002B0060188661188661188661188661188661188...DDF9
...
:2B39720060188661188661188661188661188661188...A523
:02399D00FFFF2A
:00000001FF

If the second line is analyzed:

 : Signals a line start
 2B Number of data bytes in this line (hex 2B=43 decimal)
 0000 Address of the first data byte
 00 Used to identify programming data
 FF 1st data byte (255 decimal)
 FF 2nd data byte (255 decimal)
 62 3rd data byte (98 decimal)
 FF 4th data byte (255 decimal)
 25 5th data byte (37 decimal)
 00 6th data byte (0 decimal)
 FF 7th data byte (255 decimal)
 ... intermediate bytes
 FF 43th (last) data byte
 CC Line Checksum

In the same way, the last programming data line (:02399D00FFFF2A) has only two bytes
with value FF, FF.

TTF: it is an ASCII text file (with extension .TTF) that stores the configuration data in a
tabular format. If the same design is analyzed, this text file starts as follows:

255,255, 98,255, 37, 0,255,255,255,255,255,255,255,255,...

In the TTF file, each configuration data byte is written using “packs” of three characters
in decimal format (left padded with spaces), with a comma as separator between packs.

RBF: the RBF is a binary file, where each configuration data byte is stored using only one
file byte. The RBF file of this design, inspected with a binary editor, could be read as:

0000 FF FF 62 FF 25 00 FF FF FF FF ...

A RBF file is the binary equivalent of a TTF file.

To write the EEPROM, the information stored in these files must be bit reversed before
programming, because when the EEPROM is read the first output data bit is the MSB, whereas
ALTERA devices require the LSB to be the first.

5. The operation of the I2C EEPROM memories

Serial EEPROM memories fall in two main categories: I2C (2 wires interface) and SPI or
MICROWIRE (3 wires interface). In the case of I2C memories this interface between a
controller and the EEPROM memory is achieved through the use of the lines SCL and SDA.

The I2C standard defines four types of “agent” on the bus:

• Transmitter: The device which is currently sending data to the bus
• Receiver: The device which is currently receiving data from the bus
• Master: The device which initiates a transfer, generates clock signals and terminates a

transfer.
• Slave: The device addressed by the MASTER.

During I2C communications, data on the SDA pin may change only during SCL low time
periods, being sampled in the rising edge of SCL; however, the exceptional change of SDA
during SCL high periods is used to indicate a START or STOP condition. All I2C transactions
must begin with a START condition and terminate with a STOP condition; they are generated
by the master and are defined as:

• A START condition is signaled by a High-to-Low transition on SDA with SCL high; it must

precede any other command.
• A STOP condition is signaled by a Low-to-High transition on SDA with SCL high.

Address and Data words are serially transmitted to and from the EEPROM in 8-bit words,
fo;;owed by a ninth clock pulse on SCL (generated by the MASTER), when the transmitter
must release the SDA line allowing the receiver to pull it down to ACKnowledge that it has
received the word. After the transmitter receives the ACK (usually sent after each byte of data)
the transmitter can continue sending data. To avoid contentions, SDA operates as an Open
Drain output, making mandatory the use of a Pull-Up resistor.

For every transaction one control byte is sent after a START condition. This control byte
consists of a unique 7-bit device address and a R/W (read/write) bit.

Some devices have address pins which allow you to change the address of a device. For
example, an EEPROM with three address pins A2, A1, A0 pins connected to GND would have
a address of 1010000 while if A2,A1,A0 are connected to Vcc the address would be 1010111.
Other devices use these bits in the control byte as "page selection bits".

In the case of the AT24C1024 memory, a 1024Kbit EEPROM (organized as 128 Kbytes), the
control byte has the format shown in Figure 3.

• This 1024K EEPROM uses the one device

address bit A1, allowing the connection of two
devices on the same bus, and this bit must compare to the corresponding hardwired input pin.

• The seventh bit P0 is the memory page address bit, being the 17th address bit of the data
word address that follows.

• The eighth bit R/W selects a read operation (if R/W=1) otherwise a WRITE.

After the control byte is sent, the receiver sends an acknowledgement ("ACK") to the
transmitter. Figure 4 shows the waveforms related to the control byte transmission process:

• In the starting point SCL is low, and SDA is

in tri-state. The pull-up resistor drives SDA
to one.

• The processor drives SCL high.
• A START is initiated when the processor

drives SDA low while SCL is high.
• The processor drives SCL low.
• To write a one, the processor drives SDA to

tri-state, because the pull-up will drive SDA high.
• A complete positive SCL pulse is issued
• The processor drives SDA low, and a complete positive SCL pulse is issued
• The processor SDA goes to tri-state, the pull-up drives SDA high, and a complete positive

SCL pulse is issued.
• The processor drives SDA low, and two complete positive SCL pulse are issued
• The processor drives SDA to tri-state or to zero, according the A1 value, and a complete

positive SCL pulse is issued
• The processor drives SDA to tri-state or to zero, according the Page Select (P0) value, and a

complete positive SCL pulse is issued
• The processor drives SDA to tri-state or to zero, according the R/W value, and a complete

positive SCL pulse is issued
• The processor drives SDA to tri-state. Simultaneously, the SDA line is pulled low by the

EEPROM to indicate an acknowledge.
• When driving SCL high, the processor captures the SDA value. It must be zero, otherwise it

signals an error.
• When SCL is driven low, the EEPROM releases SDA to tri-state and the high memory

address byte transfer may start.

There are two write methods and three read methods to access the EEPROM contents:

• BYTE WRITE: a byte write operation is used to put data into a specific memory location. A

byte write operation requires a START, the 8-bit device address (with R/W=0 and P0 set to
the value of the 17th address bit), the ACK from the receiver, the high byte of the address,
the ACK from the receiver, the low byte of the address, the ACK from the receiver, the data
to be written, the ACK from the receiver, and a STOP. Once the STOP is received, an
internal write process is triggered and the EEPROM will not respond until the write is
complete.

• PAGE WRITE: a page write operation is be used to program up to 256 bytes at a time in a
given page. It is initiated in the same way as a byte write, but the controller does not send a
STOP condition after the first data word is clocked in. Instead, after the EEPROM
acknowledges receipt of this data word, the controller can transmit up to 255 more data

FIGURE 3

101 0 0 A1 P0 R/W

FIGURE 3

101 0 0 A1 P0 R/W

SCL

SDA(P)

SDA(M)

FIGURE 4
0

A P R ZZZ Z0 00

Z

start address

page
read/write

SCL

SDA(P)

SDA(M)

FIGURE 4
0

A P R ZZZ Z0 00

Z

start address

page
read/write

words (waiting for the ACK after each byte is sent). To terminate the page write sequence
the controller issues a STOP condition. The data word address lower 8 bits are internally
incremented following the receipt of each data word, but the higher data word address bits
remain unmodified; thus, when the low data word address reaches 255, the following byte is
placed at the address 0 in the same page.

• CURRENT ADDRESS READ: the internal data word address counter maintains the last

address accessed during the last read or write operation, incremented by one; this address
stays valid between operations as long as the chip power is maintained. For a current
address read the controller sends a device address with the R/W select bit set to ‘1’ receives
the acknowledge from the EEPROM, but then it is the EEPROM who takes the transmitter
role sending the requested data to the controller (note that the controller does not send any
address). To close the current address read operation, after the EEPROM sent a byte the
receiver (the controller in this case) does not respond with an ACK but issues a STOP
condition. This is called a "NACK".

• RANDOM READ: a random read requires a dummy byte write sequence to load in the

internal data word address register followed by a current address read. Following a byte
write command and after the device address word (with R/W=0) and data word address have
been clocked in and acknowledged by the EEPROM, the controller aborts the byte write
generating another START condition. The controller now initiates a current address read by
sending a device address (now with R/W=1). The EEPROM acknowledges the device
address and serially clocks out the data word. The controller sends a NACK and the
transaction ends.

• SEQUENTIAL READ: sequential reads are initiated by either a current address read or a

random address read. After the controller receives a data word, it respond with an
acknowledge. As long as the EEPROM receives an acknowledge it will continue
incrementing the data word address and serially clock out sequential data words. When the
whole memory address limit is reached the data word address will rollover and the sequential
read will continue. The sequential read operation is terminated when the micro controller
respond with a NACK.

A micro controller routine may be easily written based on four
procedures (Figure 5):

• WRITE_ZERO: (waveform A) drives the SDA line to ‘0’,

drives SCL to ‘1’, then to ‘0’, then SDA to tri-state, and returns
no value

• WRITE_ONE: (waveform B) puts the SDA processor output in
tri-state, captures the value of the SDA line, drives SCL to ‘1’,
drives SCL to ‘0’, and returns the captured SDA value.

• START: (waveform C) drives SDA to tri-state and SCL=‘1’, then
SDA to ‘0’, then SCL to ‘0’, then SDA to tri-state, and returns no
value

• STOP: (waveform D) drives SDA to ‘0’, then SCL to ‘1’, then
SDA to tri-state, and returns no value

In this case every transaction starts and end with SCL and SDA in ‘1’; within a transaction, each
bit period starts and ends with SCL=’0’ and SDA=tri-state.

Today, the size of higher density EEPROM serial memories with I2C interface is around 1 Mbit
(e.g. Atmel AT24C1024); a device of this size can be used to store the configuration file for any
FLEX6000 devices, FLEX10K devices ranging from 10K10 to 10K70, ACEX1K devices from

SDA

SCL

SDA

SCL

SDA

SCL

SDA

SCL

A

B

C

D

FIGURE 5

SDA

SCL

SDA

SCL

SDA

SCL

SDA

SCL

A

B

C

D

FIGURE 5

EP1K10 to EP1K50, and APEX devices from EP20K30E to EP20K100/100E; lower size
memories (e.g. the Microchip 24LC128, with 128 Kbits), can be used for the ALTERA smaller
devices such as EP1K10 or FLEX10K10.

However, I2C memories are not the only alternative. If other interfaces are considered, many
other choices exist. As an example, ST Microelectronics has announced serial FLASH
memories with up to 8 Mbits; these devices, controlled through an SPI interface, can be also
easily interfaced to a CPLD.

6. The proposed circuit

Figure 6 shows an
hypothetical circuit using an
I2C serial EEPROM, showing
that only one pull-up has been
added to the standard
configuration circuit required
for CPLDs. The only point to
note is that the EEPROM and
the CPLD use different
clocks (DCLK and SCL),
because during the ACK
reception and EEPROM
address settings, SCL must
pulse and DCLK must remain
quiet.

Figure 6 shows also the five procedures now required to manage the configuration process:
• A. WR_0: the EEPROM is written with a zero, but DCLK remains unchanged
• B. WR_1/READ_ACK: used to write a one on the EEPROM or to read the ACK from the

EEPROM, DCLK remains unchanged, on the rising edge captures and then returns the SDA
value

• C. RD: used to read one bit from the EEPROM and to input this bit on the CPLD, returns the
nSTATUS value

• D. START: issues a START condition on the EEPROM, and DCLK remains in zero.
• E. STOP: issues a STOP condition on the EEPROM, returning DCLK to zero

In the case of SPI/Microwire memories, Data Input (DI) and Data output (DO) use different
lines, therefore the interface requires one additional micro controller pin. However,
configuration may be faster since no ACK pulses are generated by the EEPROM.

7. Pseudo code of the configuration procedure

The configuration process may be described using the previous five procedures, as follows. The
time delays are for the worst case and may be smaller, since they run concurrently with other
procedures.

-- the CPLD configuration process is triggered

nCONFIG = 0; wait until nSTATUS=0; wait for 8 us;
nCONFIG = 1; wait for 40 us until nSTATUS=1;

SCL

DATA
DCLK

nCONFIG

CONF_DONE

nSTATUS

DATA

DCLK

nCE nCEO

nCONFIG

CONF_DONE

nSTATUS

VCC

FIGURE 6

SCL

SDA

SDA

SCL

DCLK

SDA

SCL

DCLK

SDA

SCL

DCLK

SDA

SCL

DCLK

SDA

SCL

DCLK

A

B

C

D

E

SCL

DATA
DCLK

nCONFIG

CONF_DONE

nSTATUS

DATA

DCLK

nCE nCEO

nCONFIG

CONF_DONE

nSTATUS

VCC

FIGURE 6

SCL

SDA

SDA

SCL

DCLK

SDA

SCL

DCLK

SDA

SCL

DCLK

SDA

SCL

DCLK

SDA

SCL

DCLK

A

B

C

D

E

if (nSTATUS=0 OR CONF_DONE=1) abort();
wait for 40 us;

-- EEPROM address setting. It starts with a dummy byte write

start();
wr_1(); wr_0();wr_1(); repeat 5 wr_0(); -- control byte B”10100000”
if wr_1() /= 0 abort(); -- check ack
repeat 8 wr_0(); -- high address byte
if wr_1() /= 0 abort(); -- check ack
repeat 8 wr_0(); -- low address byte
if wr_1() /= 0 abort(); -- check ack

-- byte write is aborted with a new START, and a sequential read starts

start();
wr_1(); wr_0();wr_1(); repeat 4 wr_0(); wr_1();-- control byte B”10100001”
if wr_1() /= 0 abort(); -- check ack

-- data read from the EEPROM is clocked in the CPLD, one byte at a time
-- the process continue until the CPLD puts CONF_DONE high
-- this WHILE loop is repeated tens to hundreds thousand times!!!
-- it’s the critical part to be optimized to reduce configuration time

while CONF_DONE=0 loop begin
 repeat 8 if rd()=0 abort(); -- check nSTATUS changes
 if wr_1() /= 0 abort(); -- check ack
 end;

-- 40 additional CPLD clocks are issued to complete configuration

repeat 40 if rd()=0 abort(); -- check nSTATUS changes
stop();

8. Conclusions

Configuration of SRAM based ALTERA devices can be easily done by a microcontroller using
the PS mode, and sharing many lines with other serial devices. In fact, only three lines
(nCONFIG, CONF_DONE and nSTATUS) are exclusively devoted to the configuration
process. The availability of low cost micro controllers makes this configuration method a valid
alternative to configuration memories.

9. Acknowledgments

The idea and first application of this configuration method were developed by Julian Kobak and
Marcelo Navarro, from Videotron S.A. (ARGENTINA).

10. References

• Altera AN116.“Configuring APEX20K, FLEX10K & FLEX6000 Devices”, June 1999, v1.0.
• Altera DS-EPROM-09. “Configuration EPROMs for FLEX Devices”, October 1998, ver.9.
• Atmel Data Sheet 1471D-07/01. “AT24C1024 Data Sheet”.
• Philips Specification. “The I2C-bus and how to use it”. December 1998

